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Abstract:

Quantifying the complex uncertainty associated with a prediction is important in many machine learning
tasks. In conditional density estimation (CDE), the conditional density of the output given the input vari-
ables is modeled. We propose the Normalizing Flow Network (NFN), a high-capacity, neural network
based model for CDE. By utilizing Normalizing Flows, a novel method of parametrizing densities, the
NFN is capable of estimating complex conditional distributions. However, the NFN’s expressiveness
leads to increased overfitting, particularly on small datasets. We review common neural network regu-
larization techniques and show how, due to the model’s structure, they are inadequate when used in the
context of CDE. To address these shortcomings, we develop a model-agnostic noise regularization ap-
proach that adds noise to the data during training. We derive how the proposed regularization introduces
an inductive bias towards smooth distributions. Across 8 datasets, we demonstrate that this regulariza-
tion approach outperforms existing methods. The NFN, combined with noise regularization, makes for
a powerful novel CDE model capable of capturing complex predictive uncertainties, even in scenarios
where data is scarce.





Kurzzusammenfassung:

Die Quantifizierung der mit einer Vorhersage verbundenen Unsicherheit ist zentraler Bestandteil vieler
Methoden und Anwendungen des maschinellen Lernens. Bei der bedingten Wahrscheinlichkeitsschätzung
(BWS) wird die bedingte Wahrscheinlichkeit der Ausgabevariablen anhand der Eingabevariablen mod-
elliert. Wir stellen das Normalisierende Ströme Netzwerk (NSN) vor, ein leistungsfähiges, auf neu-
ronalen Netzen basierendes Modell für BWS. Durch die Verwendung von Normalisierenden Strömen,
einer neuartigen Methode zur Modellierung von Wahrscheinlichkeitsdichten, ist das NSN in der Lage,
komplexe bedingte Wahrscheinlichkeiten anzunähern. Die Ausdrucksstärke des NSN führt jedoch zu
vermehrter Überanpassung, insbesondere auf kleinen Datensätzen. Wir untersuchen gängige Techniken
zur Regularisierung neuronaler Netze und zeigen, wie diese, aufgrund der inhärenten Modellstruktur,
im Rahmen von BWS unzureichend sind. Um diese Mängel zu beheben, entwickeln wir eine Methode
zur modellunabhängigen Rauschregularisierung. Wir zeigen, dass durch leichtes Verrauschen der Daten
während des Trainings glattere Verteilungen gelernt werden und somit Überanpassung verhindert werden
kann. Anhand von acht Datensätzen zeigen wir, dass der vorgestellte Regularisierungsansatz existierende
Methoden in Effektivität übertrifft. Das NSN, kombiniert mit der Rauschregularisierung, bildet ein leis-
tungsfähiges, neuartiges BWS-Modell, das in der Lage ist, komplexe bedingte Wahrscheinlichkeiten zu
modellieren, auch wenn nur wenige Lerndaten zur Verfügung stehen.
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1. Introduction

Conditional density estimation (CDE) generalizes regression by modelling the full conditional distribu-
tion p(yyy|xxx) instead of just the mean E[yyy|xxx]. It provides a way of precisely quantifying the uncertainty
associated with a prediction. CDE is helpful in situations where the mean provides a poor representation
of the conditional distribution, e.g. in the face of multimodality. Among others, it has been used suc-
cessfully for predicting return densities in finance (Engle, 2001), treatment effects in medicine (Strobl
and Visweswaran, 2019) and value functions in reinforcement learning (Bellemare et al., 2017). Of par-
ticular interest to us is parametric CDE, where the conditional is assumed to be a member of a family of
distributions C = {p(·|θ)|θ ∈ Θ}, with θ being the finite parameter vector that specifies the respective
distribution.

Normalizing Flows (NFs) are one such distributional family that has recently received much interest
in machine learning. For instance, they have been used successfully for estimating high dimensional
densities, like those of images (Kingma and Dhariwal, 2018), sounds (van den Oord et al., 2016a) and
posteriors of probabilistic models (Kingma et al., 2016). By defining a transformation of a simple base
density through learnable, invertible mappings, NFs provide a novel way of parametrizing distributions.
They enable the modelling of non-Gaussian characteristics such as multimodality, heavy tails and skew-
ness. Previous research focuses on NFs for unconditional density estimation. We generalize and show
how to use NFs in the context of CDE. In this vein, we present the Normalizing Flow Network (NFN),
a neural network based, parametric CDE model using NFs as its density model. Given enough capacity,
NFNs allow us to model highly complex conditional densities.

In this work we focus especially on real-world regression datasets, where often only little data is avail-
able. This increases the danger of overfitting for high-capacity CDE models, like the NFN, making
appropriate regularization necessary. Standard regularization techniques for neural networks are difficult
to analyze in the context of CDE. This is due to the neural network having only an indirect influence on
the output of the full model as it merely specifies the parameters of the output distribution and not the
output itself. As a solution, we propose a noise regularization method that adds small random pertur-
bations to the data during training. Intuitively, this slightly smears the datapoints and makes overfitting
more difficult. We derive, how noise regularization introduces favourable inductive biases in CDE by in-
centivizing smooth conditional distributions. We compare noise regularization to common regularization
techniques, like weight decay (Hanson and Pratt, 1989) and L1/L2 penalties. In addition, we also inves-
tigate the effectiveness of a Bayesian treatment of the problem. This involves interpreting the learnable
parameters of the NN as random variables. We can now place highly configurable prior distributions,
that have a regularizing effect, on the weights and biases of NN. We fit the resulting Bayesian Neural
Network (BNN, Neal (2012)) using variational inference (Blei et al., 2017). Out of the mentioned meth-
ods, noise regularization is the only technique that works in the data space, irrespective of the model’s
parameters, making it model agnostic.

In our experiments, we compare the performance of the NFN to two other CDE models and assess
the usefulness of noise regularization relative to the parameter-space regularization techniques. This is
done on 8 different datasets, ranging from simulated densities to real-world financial data. We show that
the NFN performs favourably for modelling non-Gaussian conditional densities. Moreover, we demon-
strate the superior performance of the proposed noise regularization method across models and datasets.
Combined, the NFN, regularized with additive noise, makes for a powerful and novel CDE model that
can be effectively applied in many scenarios, even on small datasets with highly non-Gaussian properties.

Conditional Density Estimation with Normalizing Flows
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The code for the Normalizing Flow Network has been published as part of an open-source Python pack-
age for CDE1, as well as in a standalone repository2. The work presented in this thesis has contributed
to a publication on noise regularization for conditional density estimation (Rothfuss et al., 2019).

The thesis is structured as follows: We begin by formally introducing the concepts of density estima-
tion and conditional density estimation. In chapter 3, we move on to presenting normalizing flows and
explaining the structure of the Normalizing Flow Network. In chapter 4, we cover regularization, first
outlining the more common techniques, then describing Bayesian neural networks and finally introducing
our noise regularization approach. An empirical evaluation of the CDE models as well as the regulariza-
tion schemes is presented in chapter 5. Finally, we wrap-up the thesis in chapter 6 and 7 with an outlook
onto further work and a conclusion.

1https://github.com/freelunchtheorem/Conditional_Density_Estimation
2https://github.com/siboehm/NormalizingFlowNetwork
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2. Background

2.1. Density Estimation

Density estimation is concerned with estimating the probability density function (PDF) p(xxx) of a random
variable X . For most real world problems, this density function is unknown and only samples xxxi ∼ p(xxx)
can be observed. The aim of density estimation is then to use a finite set D = {xxx1, . . . ,xxxN} of independent
and identically distributed (i.i.d.) samples to find an estimate p̂(xxx) of the true density p(xxx). Finding the
distribution that generated a dataset without further making assumptions is an ill-posed problem. Any
PDF that is non-zero at each xxxi could have given rise to the observations (Bishop, 2006, p. 67). Hence,
further assumptions about the structure of p(xxx) have to be made. Parametric and non-parametric density
estimation are two different approaches for imposing necessary assumptions and solving this problem.

2.1.1. Parametric Density Estimation

In parametric density estimation, the general problem is simplified by assuming that p̂(xxx) belongs to a
family of probability densities F = {p̂θ (·)|θ ∈Θ}, specified by a finite-dimensional parameter vector θ .
An example might be the family of multivariate Gaussians with the density function:

µ ∈ Rn,Σ ∈ Rn×n,Σ� 0 N (xxx|µ,Σ) = 1√
(2π)n det(Σ)

exp
(
−1

2
(xxx−µ)T

Σ
−1(xxx−µ)

)
(2.1)

where a particular PDF can be specified using θ = (µ,Σ) with the mean vector µ and covariance matrix
Σ. In a frequentist setup, the optimal parameter vector θ ∗ is determined by maximizing some function
f (θ ,D), for example the likelihood function

L(θ ,D) =
N

∏
n=1

p̂θ (xxxn) (2.2)

This results in the optimal parameter θ ∗,

θ
∗ = argmax

θ

L(θ ,D) = argmax
θ

N

∑
n=1

log p̂θ (xxxn) (2.3)

where the computation in log-space is often numerically preferable. This can be viewed as empirical
approximation to minimizing the Kullback-Leibler-divergence (KL-divergence) between p(xxx) and pθ (xxx)
(Bishop, 2006),

xxx1, . . . ,xxxn ∼ p(xxx) Ep(xxx)[ f ]'
1
N

N

∑
n=1

f (xxxn) (2.4)

DKL(p||p̂θ ) = Ep(xxx)

[
log

p(xxx)
pθ (xxx)

]
' 1

N

N

∑
n=1

log(p(xxx))− log(pθ (xxx)) (2.5)

where only the second term in (2.5) is dependent on θ and needs to be minimized.
A drawback of parametric density estimation is that if the true density p(xxx) is not in the density family

F , then the parametrized density pθ (xxx) will never fully converge, even if infinitely many datapoints are
provided.

Conditional Density Estimation with Normalizing Flows
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2.1.2. Nonparametric Density Estimation

Nonparametric density estimation, on the other hand, does not explicitly restrict the family of distri-
butions. Rather, it imposes implicit smoothness assumptions onto the density estimate. Popular non-
parametric density estimators include nearest-neighbour methods such as histograms and kernel density
estimators (KDE). The latter involves placing a kernel, a non-negative, normalized function, around every
observed datapoint ( Parzen (1962), Rosenblatt (1956)). A common choice is the Gaussian kernel:

K(xxx) =
1

(2π)−n/2 exp
(
−1

2
xxxTxxx
)

(2.6)

The resulting distribution is then the equally weighted, normalized mixture of the N kernels, each cen-
tered in a data point xxxn:

p(xxx) =
1
N

N

∑
n=1

1
hD K

(
xxx− xxxn

h

)
(2.7)

In that, h is the bandwidth parameter which controls the regularization of the density estimator. When
using a Gaussian kernel, h can be interpreted as the standard deviation. The bandwidth parameter al-
lows trading off between smoothness (underfitting) and flexibility (overfitting) of the resulting density
function. Properly setting this parameter is crucial to producing an estimator that fits the data well and
ensures asymptotic convergence to the true density ( Li and Racine (2007), Devroye (1983)). Because
this technique uses a separate kernel for every observed datapoint, the computational burden of evaluat-
ing the density grows linearly with the amount of data available. Furthermore, nonparametric methods
often generalize poorly when applied to higher-dimensional problems since increasing the dimensions
makes the datasets inherently sparse and reduces the information gained through measuring the distance
between points.

2.2. Conditional Density Estimation

Estimating the conditional density of the target variables, given some input variables, is the core problem
of supervised machine learning. More formally, let X , Y be two random variables with realizations xxx, yyy
and the conditional probability distribution p(yyy|xxx). The aim of conditional density estimation (CDE) is
to find an estimate of the unknown, true PDF p(yyy|xxx) given a dataset D = {(xxx1,yyy1), . . . ,(xxxn,yyyn)} sampled
i.i.d. from the joint probability distribution p(xxx,yyy).

Most work in the machine learning literature focusses on parametric CDE. This approach can be
formalized by choosing:

1. a family of parametric densities C = { p̂(·|θ)|θ ∈Θ, p̂(·|θ) : Y,Θ→ [0,1]}

2. a family of functions H = {hω(·)|ω ∈Ω,hω(·) : X →Θ}

3. an inference procedure I(·) where I(D, pprior) = ppost with pprior being the prior distribution and
ppost being the posterior distribution over the parameters.

Given a sample ω from the posterior distribution ppost , the approximated conditional probability distri-
bution takes the form p̂(yyy|hω(xxx)). The function hω(·) maps a sample xxx to a parameter vector θ which
then specifies the distribution over yyy. If the families C and H are picked to be more expressive, this often
reduces the speed of optimization and increases the danger of overfitting.

For now, we will focus on the common maximum likelihood approach in its most basic form, where
the prior pprior is a uniform distribution over the parameter space and the posterior ppost is a dirac delta
function with center point ωML. ωML is set to maximize the conditional likelihood:

ωML = argmax
ω

N

∏
n=1

p̂(yyyn|hω(xxxn)) = argmax
ω

N

∑
n=1

log p̂(yyyn|hω(xxxn)) (2.8)

Conditional Density Estimation with Normalizing Flows
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The common regression algorithm implicitly performs maximum likelihood CDE. It is a special case
of the above framework where only the mean of the conditional distribution is being modeled: Let gω

be a regression model outputting a point estimate gω(xxx) = E[yyy|xxx] = ŷyy,xxx ∈ Rd1 ;yyy, ŷyy ∈ Rd2 , for example a
neural network. Setting ωML by minimizing the mean-squared-error (MSE)

ωML = argmin
ω

1
N

N

∑
n=1

(yyyi− ŷyyi)
2 (2.9)

is equivalent to maximizing the log-likelihood under the assumption of a Gaussian conditional distribu-
tion, where the output of the model is the mean of the Gaussian,

ωML = argmin
ω

N

∑
n=1

logN (yyyn|gω(xxxn), I) = argmin
ω

N

∑
n=1

1
2
(yyyn−gω(xxxn))

2 (2.10)

using the definition in equation 2.1. It can be seen that the CDE model given in 2.10 and the standard
regression model given in 2.9 will yield the same result.

2.2.1. Characteristics of the conditional distributions

Our aim is to build a model that is capable of modelling complex conditional distributions. Three charac-
teristics of particular importance to us are multimodality, heteroscedasticity and complex tail behaviour.
These can be observed in real-world datasets. A Gaussian conditional distribution, as assumed by many
common regression models, fails to model either of those characteristics.

Multimodality

Multimodality refers to the PDF having multiple local maxima, called modes. This can result in the
mean being an insufficient representation of the overall distribution. Detection of those modes has been
studied extensively in density estimation (Silverman, 1981). A real-world example is the distribution
of the salaries of first-year lawyers seen in figure 2.1, which is strongly bi-modal and has much of the
probability mass away from the mean. Reducing this distribution down to its mean is not representative.
We will consider distributional families C that can represent multimodality.

Heteroscedasticity

For a heteroscedastic distribution, the conditional variance Var(Y |X) is not constant. The opposite, ho-
moscedasticity, is an assumption often made in the context of regression models like linear regression.
The variance of the PDF outputted by the model can be interpreted as a measure of uncertainty about the
actual value of the dependent variable Y given the input variable X . Using a family of conditional distri-
butions that allows for changing variance would then enable the model to output changes in uncertainty
over the input space, in effect, signalling the amount of uncertainty about the prediction. The dataset in
figure 2.2 exhibits heteroscedasticity, with the variance of y being higher for x ≤ 0. Heteroscedasticity
can be observed in many finance datasets, where the variance of returns often strongly varies over time
(Damodar, 2004). As a countermeasure, financial models, like the ARMA-GARCH method, have been
developed to model the mean and variance of a Gaussian distribution ( Hamilton (1994), Engle (1982)).
Yet those models still make strong assumptions about the characteristics of the data, e.g. assuming uni-
modality, and it is unclear how consistent these assumptions are with the empirical data.

Complex tail behaviour

The tail of a distribution refers to the parts of the PDF that are far away from the mean. The behaviour of
such outliers can strongly influence the usefulness of an estimate. Of specific interest to us are fat-tailed
distributions since their characteristics have been observed in manys fields, from wage distribution to
meteorology and finance (Mandelbrot, 2001). They are characterized by their tails decaying according

Conditional Density Estimation with Normalizing Flows
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Figure 2.1.: Distribution of annual salaries earned by first-year lawyers (in green). Source: NALP (2010)
.

Figure 2.2.: An example dataset, generated by adding heteroscedastic Gaussian noise, to a sinusoid. The
variance of Y is higher for X ≤ 0.

Conditional Density Estimation with Normalizing Flows
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to the power-law x−α , especially for α ≤ 2 . Distributions like this have a significant amount of their
mass located away from the mean of the distribution. This results in outliers being much more likely
than under a Normal distribution, where the tails decay according to e−x2

. One example of a fat-tailed
distribution is the Cauchy distribution,

a ∈ R,b ∈ R p(x|a,b) =

{
πb

[
1+
(

x−a
b

)2
]}−1

(2.11)

where a is the location parameter and b is the scale parameter (Forbes et al., 2011). In figure 2.3, the
cauchy distribution is plotting against a normal distribution, highlighting the heavy tails. Given a enough
flexibility within the parametric family C, our estimators can model complex and fat tail behaviour.

Figure 2.3.: A Cauchy distribution (green) and Normal distribution (red). The Cauchy distribution has
heavier tails..

Conditional Density Estimation with Normalizing Flows
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3. Normalizing Flow Network

The Normalizing Flow Network (NFN) is a novel CDE model designed for accurately estimating low-
dimensional, highly non-Gaussian conditional densities. It builds upon the generic architecture presented
in section 2.2. As the family of functions we employ neural networks. For our family of densities we
use normalizing flows. By building our model as the combination of these two expressive families, we
can model arbitrarily complex conditional densities and cover all distributional characteristics listed in
section 2.2.1. Whereas most of the recent research on normalizing flows has focused on high-dimensional
densities, we focus on flows that work well on low-dimensional data. We begin by introducing the
distributional family of normalizing flows, before outlining the structure of the NFN.

3.1. Normalizing Flows

Normalizing Flows (Tabak and Turner (2013), Tabak and Vanden-Eijnden (2010)) were originally devel-
oped for density estimation. They work by transforming a random variable Z0, distributed according to
a simple base distribution, through a series of invertible mappings f = ( f1, . . . , fN), which results in a
transformed random variable ZN with a potentially much more complex distribution. In our experiments,
the base distribution is set to a multivariate Gaussian:

Z0 ∼N (0, I) (3.1)

f = ( f1, . . . , fN) , fn : Rd → Rd ,∃ f−1
n : ∀x ∈ Rd : f−1( f (x)) = x (3.2)

ZN = fN ◦ · · · ◦ f1(Z0) (3.3)

This setup can already be used for sampling. To sample zzzN ∼ p(ZN), one can draw a sample zzz0∼N (0, I)
and transform it using fN(. . . f1(zzz0)) = zzzN , which results in a sample from the more complex, transformed
distribution. To evaluate the probability density of a sample transformed through a single flow f1(zzz0),
the change-of-variable formula is applied:

p(zzz1) = p( f−1
1 (zzz1))

∣∣∣det
∂ f−1

1
∂ zzz1

∣∣∣= p(zzz0)
∣∣∣det

∂ f1

∂ zzz0

∣∣∣−1
(3.4)

Intuitively, since the absolute determinant of the Jacobian of a function corresponds to the change of
volume incurred through the function, it’s inverse can be used to renormalize. Eq. 3.4 can be deducted
using the inverse-function theorem J f−1( f (xxx)) = J f (xxx)−1 for invertible functions f and the equation
det(A)det(A−1) = det(AA−1) = 1 = det(A)det(A)−1. It can be seen that large gradients of f lead to a
small p(zzz1), stretching out the density. Small gradients, on the other hand, have a compressing effect.
By compositing normalizing flows, a new, more expressive flow can be built. Generalizing equation 3.4
to a chain of N flows and moving to log space gives:

log p(zzzN) = log p(zzz0)−
N

∑
n=1

log
∣∣∣det

∂ fn

∂ zzzn−1

∣∣∣ (3.5)

The computational cost grows linearly with the amount of flows used. To enable fast calculation of
likelihoods, the inverse log determinant of the Jacobian (ILDJ) needs to be efficiently computable. Any
function that is invertible and differentiable with a strictly non-zero derivative can be used as a normal-

Conditional Density Estimation with Normalizing Flows
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izing flow. To be useful in density estimation, the flow needs to be parametrized and differentiable with
regards to the parameters. Many such functions have been proposed. Due to their invertibility, the flows
are also called bijectors. The NFs shown here are, when properly combined, able to model all three
desirable characteristics of conditional densities mentioned in section 2.2.1.

3.1.1. Affine Flows

The affine flow is the simplest normalizing flow, apart from the identity bijector. It performs a scale-and-
shift operation on the underlying density and is easily invertible. This flow is given by

aaa,bbb ∈ Rd f (zzz) = exp(aaa)� zzz+bbb (3.6)

f−1(zzz) = exp(aaa)−1� (zzz−bbb) (3.7)

log
∣∣∣det

∂ f
∂ zzz

∣∣∣−1
=−

D

∑
i=1

ai (3.8)

Where � represents element-wise multiplication. Every distribution in the location-scale family can be
represented as an affine flow transforming the base distribution of the family, where the base distribution
has zero mean and uniform variance. Using a univariate normal distribution as an example, let fθ be
an affine flow with θ = {a,b}. The standard normal distribution, transformed into a normal distribution
with mean b and variance e2a is given by

xxx0 ∼N (0,1),xxx1 = fθ (xxx0) (3.9)

p(xxx1) = p( f−1
θ

(xxx0))e−a =
1√

2πe2a
exp
(
−(xxx0−b)2

2e2a

)
(3.10)

In figure 3.1, we can observe a 2D standard Gaussian (left) being transformed through an affine flow,
resulting in the density being shifted and scaled (right). While this flow is simple and has a fast-to-
compute ILDJ, it doesn’t change the underlying density family and cannot model multimodal PDFs.

Figure 3.1.: Samples from an affine flow transforming a 2D Gaussian. The distribution is scaled and
shifted but stays Gaussian. Color-coding is given to demonstrate how data in each quadrant
shifts with the transformation.
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3.1.2. Planar Flows

Planar flows (Rezende and Mohamed, 2015) transform the base density to be non-Gaussian and can turn
a unimodal distributions into a multimodal ones. These flows expand or contract the base density around
a hyperplane. The planar flow is given by

www,uuu ∈ Rd ,b ∈ R f (zzz) = zzz+uuu tanh(wwwTzzz+b) (3.11)

The hyperbolic tangent can be replaced with any differentiable element-wise non-linearity. We have
found tanh to work well. The following equations will be specific to its use. The hyperplane, around
which the density is transformed the most, is characterized by the equation wwwTzzz+ b = 0. uuu specifies
the direction of the expansion/contraction. In figure 3.3 we can see a 2D standard Gaussian being trans-
formed through a planar flow, resulting in the distribution becoming bimodal. Figure 3.2 illustrates how
chaining two planar flow results in a more expressive parametric density. The ILDJ for a planar flow is
computable in O(d) as

log
∣∣∣det

∂ f
∂ zzz

∣∣∣−1
=− log(|I +uuuT tanh′(wwwTzzz+b)w|) (3.12)

Function 3.11 may not be invertible depending on the parameters. To ensure invertibility, the the inequal-
ity

wwwTuuu≥−1 (3.13)

needs to hold. Intuitively, if this constraint is not fulfilled, the distribution is compressed towards the
hyperplane to a degree where the two sides overlap and make an inversion impossible. This can be
avoided by constraining uuu:

û(www,uuu) = uuu+
(
−1+ζ (wwwTuuu)− (wwwTuuu)

) www
‖www‖2 (3.14)

where ζ is the scalar softplus function log(1+ ex). This works by adjusting uuu using its orthogonal pro-
jection onto www, i.e. uuu‖ = uuuTwww www

‖www‖2 , as to fulfill equation 3.13. In practice equation 3.14 suffers numerical
problems, with exploding gradients resulting from computing www

‖www‖2 for small www. Proper initialization (i.e.
www = 1) mitigates some of those problems.

Improving on the Original Parametrization of Planar Flows

In our early experiments, when comparing the origin planar flow parametrization against radial flows, the
radial flows converged more stably and yield better results. Therefore most of our further experiments
focused on radial flows. Here we propose two approaches that could result in a more stable convergence
and therefore better performance when using planar flows:

1-D Optimization: If the planar flow is being used for transforming one-dimensional densities, a
simplification can be applied. The symmetry of the hyperbolic tangent, tanh(−x) = −tanh(x) can be
used to constrain w ∈ R to w ∈ R+ without loss of expressivity. This simplifies equation 3.14 to

u ∈ R,w ∈ R+ û(w,u) =
1
w
(−1+ζ (wu)) (3.15)

and thereby removes the quadratic denominator ‖w‖2.

Weight Normalization: The right hand side of equation 3.11 can be interpreted as a one layer neural
network. The concept of weight normalization (Salimans and Kingma, 2016) has been recently suggested
in the context of training neural networks as a way of improving the conditioning of the optimization
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problem. It works by reparametrizing the weight vector www as

www,vvv ∈ Rd ,g ∈ R+ www = g
vvv
‖vvv‖

(3.16)

This effectively treats the direction vvv and the length g of the original weight vector as separate trainable
variables. It creates a self-stabilizing effect when using Stochastic Gradient Descent (SGD), but also
shows empirical effectiveness when using adaptive gradient methods like Adam (Kingma and Ba, 2014).
Using weight normalization, equations 3.11 and 3.14 become:

vvv,uuu ∈ Rd ,b ∈ R,g ∈ R+ f (zzz) = zzz+uuu tanh(
g
‖vvv‖

vvvTzzz+b) (3.17)

û(vvv,uuu,g) = uuu+
(
−1+ζ (

g
‖vvv‖

vvvTuuu)− (
g
‖vvv‖

vvvTuuu)
)

vvv
g‖vvv‖

(3.18)

which also removes the quadratic denominator ‖www‖2.
While a planar flow is invertible, no closed-form inverse is known, and the inverse mapping can only be

approximated. For samples generated through the flow, the likelihood can be computed through caching
the inverse without needing to compute it. For externally provided data, this is not possible. This makes
the planar flow in it’s normal form difficult to use for CDE, but a solution will be discussed in Section
3.2.

Figure 3.2.: Samples from a planar flow transforming a multivariate Gaussian. The expansion away from
the hyperplane makes the resulting density bimodal and non-Gaussian. Color-coding is given
to demonstrate how data in each quadrant shifts with the transformation.

3.1.3. Radial Flows

As an alternative to planar flows, we used radial flows (Tabak and Turner (2013), Rezende and Mohamed
(2015)). They define an isotropic expansion of the base density around a center point γγγ . We use the alter-
native parametrization defined in Trippe and Turner (2018), since it simplifies the parameter constraints
necessary to ensure invertibility of the flow. This flow is given by
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Figure 3.3.: A multivariate Gaussian transformed successively through two planar flows. Chaining mul-
tiple flows allow the creation of multimodal complex densities.

γγγ ∈ Rd ,α,β ∈ R f (zzz) = zzz+
αβ (zzz− γγγ)

α +‖zzz− γγγ‖
(3.19)

Intuitively, β sets the maximum magnitude of the distortion, whereas α defines how quickly the distortion
will decay when moving away from the reference point γγγ . The ILDJ is given as:

log
∣∣∣det(

∂ f
∂ zzz

)
∣∣∣−1

=− [1+αβh(α,r)]d−1 [1+αβh(α,r)+αβh′(α,r)r
]

(3.20)

h(α,r) =
1

α + r
,r = |zzz− γγγ| (3.21)

In figure 3.4 we can observe a 2D standard Gaussian being transformed through a radial flow, resulting
in the density being contracted around the reference point. Figure 3.5 illustrates how a radial flow can be
used to parametrize heavy-tailed distributions.

In order for Function 3.19 to be invertible,

α ≥ 0, β ≥−1 (3.22)

must hold. This can be ensured using the transformation:

α̂ ∈ R,α = ζ (α̂) β̂ ∈ R,β =−1+ζ (β̂ ) (3.23)

This is different from the activation function used in Trippe and Turner (2018) where β =−1+ exp(β̂ ).
Although both their activation function and this one achieve the same constraining effect, we have found
the softplus function to lead to smoother gradients. Radial flows have a closed form inverse as originally
derived in Tabak and Turner (2013). For our parametrization the inverse takes the form:

f−1(zzz′) =
r(zzz′− γγγ)

s
+ γγγ (3.24)

s = ‖zzz′− γγγ‖, r =
s−α(1+β )

2
+

√(
s−α(1+β )

2

)2

+αs (3.25)

Similar to planar flows, radial flows were optimized for fast computation of samples and their associated
likelihoods. As a result, the forward function 3.19 is faster to compute than its inverse 3.24.
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Figure 3.4.: A radial flow transforming a Gaussian. The density is compressed around the reference
point.

Figure 3.5.: A radial flow transforming a univariate standard Gaussian. The density is expanded around
the reference point γγγ creating a heavy-tailed distribution.
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3.2. Normalizing Flow Network

NFs are a useful and expressive model for density estimation. We will now generalize them and show
how to use NFs in the context of CDE as part of the Normalizing Flow Network (NFN). As noted, the
planar and radial flows are optimized for fast drawing of samples and calculation of their likelihood. For
CDE, we need the likelihood evaluation for externally provided data to be quick. Therefore we invert
the flows, making them define a mapping from the transformed distribution p(zzzn) to the base Gaussian
distribution p(zzz0). This is given by:

Z0 ∼N (0, I), Z0 = f1 ◦ · · · ◦ fN(ZN) (3.26)

log p(zzzN) = log p(zzz0)+
N

∑
n=1

log
∣∣∣det

∂ fn

∂ zn

∣∣∣ (3.27)

where fk(zzzk) = zzzk−1. Importantly, the sign of the sum is now flipped compared to equation 3.5. It is no
longer necessary to compute the inverse to calculate the likelihood of a datapoint. We now consider the
parameters θ = {θ1, . . . ,θN} of an N-stage flow fθ (·) = fθ1 ◦ · · · ◦ fθN as tuneable, to be set to the output
of a neural network hω(xxx) with trainable weights ω . The structure of this model is illustrated in figure
3.6 The conditional density estimate for the datapoint (xxx,yyy) is

hω(xxx) = θ , log p̂(yyy|θ) = log p( fθ (yyy))+
N

∑
n=1

log
∣∣∣det

∂ fθn

∂ zn

∣∣∣ (3.28)

The weights of the neural network can then be trained using a negative log-likelihood loss,

ED(ω) =−
N

∑
n=1

log p̂(yyyn|hω(xxxn)) (3.29)

which can be optimized using standard backpropagation techniques.

Before training the neural network weights, the hyperparameters of the NFN need be specified. Apart
from the configuration of the neural network (activation function, layer sizes, . . . ) and the inference
procedure (learning algorithm, learning rate, . . . ), the normalizing flow itself also has hyperparameters.
The length of the flow can be used to configure the complexity of the resulting distribution. However this
is not as intuitive as setting the number of kernels of the MDN or KMN, where the number of kernels
provides an upper bound on the number of modes. Furthermore the types of flows can be specified, and
mixing different types of flows is possible. In contrast to planar and radial flows, chaining affine flows
back-to-back does not result in a more expressive density since shiftings and scalings are additive.

3.3. Related Work: Normalizing Flows

Recently there has been increasing interest in developing density models based on normalizing flows.
They provide a few advantages over other successful types of generative models. Unlike generative ad-
versarial networks (Goodfellow et al., 2014) and variational autoencoders (Kingma and Welling (2013),
Rezende et al. (2014)), NFs can compute the likelihood of every generated sample. The recent research
in the field of normalizing flows has mainly been on how to estimate high dimensional distributions us-
ing large datasets, such as images or posteriors in variational inference. As we have observed with the
flows introduced previously, often, trade-offs have to be made between potentially orthogonal features
like expressiveness and computational complexity. The NF research can be roughly divided into two
categories: purely NF based models and models using the autoregressive property (Weng, 2018).
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Figure 3.6.: Outline of a Normalizing Flow Network. A neural network hω(xxx) outputs the parameters θ =
{θ1, . . . ,θN} necessary to parametrize the N-stage normalizing flow. The standard Gaussian
base distribution is transformed into a complex distribution parametrized by θ .

3.3.1. Pure Normalizing Flows

The following models work similarly to the previously introduced normalizing flows by transforming a
base distribution through invertible functions into a more complex distribution and employing the change
of variable formula.

Sylvester Normalizing Flows

Sylvester Normalizing Flows (van den Berg et al., 2018) are a generalization of the planar flows intro-
duced above. Computing wwwTxxx in equation 3.11 is a bottleneck since it reduces the information in xxx down
to a single dimension. This can be interpreted as a single-node neural network. As a remedy, Silvester
NFs replace this scalar product by a matrix product, given by

A ∈ RD×M,B ∈ RM×D,bbb ∈ RM,M ≤ D f (zzz) = zzz+Ah(Bzzz+bbb) (3.30)

The right side of this equation is now a single layer MLP with M hidden units instead of just one. The
parameters of this flow need to be appropriately constrained to ensure invertibility. Since Sylvester NFs
promise expressiveness even when used on low dimensional density, they would be a promising addition
to the NFs employed in the NFN.

Real NVP

The real-valued non-volume preserving flows (Real NVP) developed by Dinh et al. (2016) are a gener-
alization of the earlier model called non-linear independent components estimation (NICE) (Dinh et al.,
2014), extended by using non-volume preserving transformations. It uses a structure similar to a feistel
network (in Dinh et al. (2016) referred to as a coupling layer) to build an invertible, expressive transfor-
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mation. This structure is outline in figure 3.7. The flow is given by:

f (xxx) =

{
yyy1:d = xxx1:d

yyyd+1:D = xxxd+1:D� exp(s(xxx1:d))+ t(xxx1:d)
(3.31)

where s, t are referred to a scale and transformation functions. They can be arbitrary, trainable, real-
valued functions. In the paper they are implemented as deep neural networks. In every stage of the
model, xxx is split into two parts x1,x2 using a binary mask. x2 is then transformed by an affine flow
parametrized by a scale and transformation function that take x1 as input. To calculate f−1 it suffices
to calculate the inverse of the affine flow using 3.7 without needing to invert s or t. This enables both
sampling, latent representation and likelihood calculation to happen in linear time. To enable every
dimension of xxx to be changed, the flow is repeated using different binary masks.

y1:d

x1:d xd:D

yd:D

t

s

+

Figure 3.7.: The structure of a single affine coupling layer in Real NVP

GLOW

GLOW (Kingma and Dhariwal, 2018), a generative flow with invertible 1x1 convolutions, expands upon
Real NVP. It employs activation normalization instead of batch normalization which works better for the
small batch sizes required when training on big images. This enables them to train on and sample high
resolution images. The masking employed in Real NVP is changed into a trainable function by using
1x1 convolutions, while keeping the affine flow coupling layer the same.

3.3.2. Autoregressive Normalizing Flows

A multivariate probability density can be deconstructed using the chain rule of probability,

p(XN , . . . ,X1) = p(XN−1, . . . ,X1) · p(XN |XN−1, . . . ,X1) = p(X1) ·
N

∏
i=2

p(Xi|Xi−1) (3.32)

enabling the distribution to be represented as a product of univariate distributions without introducing
any assumptions. To perform parametric density estimation, p(Xi|Xi−1, . . . ,X1) can then be modelled as
a univariate parametric distribution using f : Ri → Θ, pθ (Xi| f (Xi−1, . . . ,X1)). Fixing some ordering on
the dimensions of a variable and predicting each dimension utilizing previous dimensions is referred to
as the autoregressive property.

MADE

Masked autoencoder for distribution estimation (MADE, Germain et al. (2015)) enables the efficient
enforcement of the autoregressive property. By creating suitable masks that zero out connections between
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the nodes of a neural network, the output nodes can be made to only depend on the inputs that are lower
in the ordering. Looking at every output node as a separate function, the output node oi(·) it takes
x1, . . . ,xi−1 as an input and uses them to compute the parameters θi of the conditional distribution over
xi, pθ (xi|x1, . . . ,xi−1). Using masking enables this to be done for all dimensions in a single forward
pass of the autoregressive neural network, enabling fast training of the model. The structure of the
binary masks are visualized in 3.8. In the original paper this was used to model high-dimensional binary
distributions, though the same basic structure can be used to for any parametric univariate distribution.
As a drawback of the autoregressive structure, sampling requires N forward passes as the distributions
for each dimension can only be computed sequentially. Furthermore if the ordering of dimensions of the
input vector is suboptimal, the model will not be able to converge to a good estimate.

Figure 3.8.: By applying a binary mask to an autoencoder neural network, the autoregressive property
can be enforced. Image source: Germain et al. (2015)

Similar masking techniques have then been used to produce autoregressive models specialized on
certain tasks, like PixelCNN (van den Oord et al., 2016b) for images and WaveNet (van den Oord et al.,
2016a) for audio.

MAF

Masked autogressive flow for density estimation (MAF, Papamakarios et al. (2017)) shows that autore-
gressive models like MADE can be interpreted as a normalizing flow. When using a suitable parametric
density (e.g. an affine flow transforming a standard univariate Gaussian), MADE transforms a sample
from the base distribution using an invertible mapping with a tractable jacobian that is parametrized by
an autoregressive function h. The structure of this transformation is visualized in figure 3.9 and given by:

yi = xi exp(ai)+bi with ai = hai(x1, . . . ,xi),bi = hbi(x1, . . . ,xi),xi ∼N (0,1) (3.33)

log
∣∣∣det

∂ f
∂ zzz

∣∣∣−1
=−

D

∑
i=1

ai, ai = hai(x1, . . . ,xi) (3.34)

As one advantage of the autoregressive model, the jacobian is triangular and therefore has a fast-to-
compute determinant. As the MAF outputs a normalized density p(yyy) it can be chained to form a more
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Figure 3.9.: MAF transforms xxx sampled from the base distribution into yyy sampled from the transformed
distribution. ai and bi are computed using the autoregressive functions hai and hbi . While the
forward pass yyy = f (xxx) is sequential, the inverse xxx = f−1(yyy) can be easily parallelized.

expressive flow, similar to chaining planar/radial flows. By changing the ordering of the dimensions
of x for each further stage of MAF, one limitation of MADE can be overcome. Similar to MADE,
sampling is expensive. The strongly related model inverse autoregressive flows (IAF, Kingma et al.
(2016)), developed for posterior estimation in variational inference, use a very similar structure to MAF
except setting different trade-offs by optimizing for fast sampling and in turn dealing with slow likelihood
calculation. Estimating conditional densities of the form p(yyy|xxx) with MAF can be achieved by setting
yi as extra input nodes that come before x1 in the ordering and are therefore never masked out. Using
our normalizing flow network with only affine flows on data where the dependent variable x is one-
dimensional is equal to such a conditional MAF. Unlike our NFN, MAF cannot model multimodality
for one-dimensional x. In higher dimensions MAF relies on its autoregressivity to model multimodality,
whereas the NFN achieves the same by using more expressive parametric densities like radial and planar
flows.

NAF

Neural autoregressive flows (NAF, Huang et al. (2018)) are a more expressive version of MAF that uses
invertible neural networks instead of affine flows as it’s density model. Such invertible neural networks
are regular neural networks, restricted to strictly positiv weights and strictly monotonic activation func-
tions. In their paper two examples, deep sigmoidal flows (DSF) and deep dense sigmoidal flows (DDSF)
are presented. Calculating the jacobian of the flows with regard to xxx can be done efficiently via back-
propagation. Since deep sigmoidal flows can model multimodality even for univariate densities, they are
a potential extension of the planar, radial and affine flows used in our normalizing flow network. It would
have to be investigated how useful they are for modelling p(xxx) with xxx ∈ Rd for d > 1, as computing the
determinant for arbitrary matrices lies in O(d3). The neural network structure of this flow is visualized
in figure 3.10.
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Figure 3.10.: The deep sigmoidal flow used by NAF. w,a,b ∈R are the parameters of the scaled sigmoid
implemented by each neuron. Image source: Huang et al. (2018)

Conditional Density Estimation with Normalizing Flows



Section 3.4: Related Work: CDE with Neural Networks Page 21

3.4. Related Work: CDE with Neural Networks

In the evaluation chapter we will compare the NFN against two other neural network based conditional
density estimators: The Mixture Density Network and the Kernel Mixture Network. Both can in theory,
given an infinite-dimensional parameter space, model arbitrary conditional densities. Their architecture
is similar and visualized in figure 3.11.

Figure 3.11.: Structural outline of both KMN and MDN

3.4.1. Mixture Density Network

The Mixture Density Network (MDN), introduced by Bishop (1994), combines a neural network with
a parametric mixture density. The neural network, given the input vector xxx, outputs a parameter vector
hω(xxx) = θ that is used to parametrize the mixture distribution p̂(yyy|θ), leading to p̂(yyy|hω(xxx)). Following
Bishop (1994), we are be using a Gaussian mixture as parametric family. To keep the parameter space
from growing quadratically with the dimension of yyy, we use diagonal covariance matrices. The mixture
density network is given by

NNω(xxx) = θ =
K⋃

k=1

{
µk,σ

2
k ,λk

}
p̂(yyy|NNω(xxx)) =

K

∑
k=1

λkN (yyy|µk,σ
2
k I) (3.35)

where the output of the neural network hω(xxx) = θ is split into mean vectors µk, variance vectors σ2
k

and mixture weights λk. In order to make a valid probability distribution, the mixture weights λk must
resemble a categorical distribution. Therefore, it must hold that ∑

K
k=1 λk = 1 and ∀k ∈K : λk ≥ 0. We can

enforce these constraints by using a softmax activation function for the relevant final layer nodes,
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λk =
exp(uλ ,k

ω (xxx))

∑
K
k=1 exp(uλ ,k

ω (xxx))
(3.36)

where uλ ,k
ω (xxx) ∈ R refers to the value of the output nodes responsible for the mixture weights λk. As a

further constraint, the variances σ2
k must be positive. We choose the softplus activation function

σ
2
k = log

(
1+ exp

(
uσ2,k

ω

))
(3.37)

to enforce this. Out of many possible activation functions, this one is preferable, as it is differentiable,
positive and partly linear. The number of kernels K to use is one of the hyperparameters of the model.
Increasing K results in a more expressive model with an increased danger of overfitting.

3.4.2. Kernel Mixture Network

The Kernel Mixture Network (KMN) can be seen as a combination of parametric and non-parametric
methods (Ambrogioni et al., 2017). Similar to the MDN, the KMN is a neural network combined with
a mixture density. Here, the network controls only the weights of the mixture. The means of the kernels
are calculated based the data and fixed during training. In Ambrogioni et al. (2017), the kernel means are
set by subsampling from the dataset and recursively removing points yyyi that are closer than a threshold
δ to their predecessor. This approach has drawbacks, since it depends on the ordering of the dataset and
the amount of kernels is only bounded by the size of the dataset given an inadequate threshold δ . Since
this subsampling approach can be seen as a form of data clustering, we instead determine the kernel
means using the well-established K-means clustering method. Also, this allows us to directly specify the
number of kernels K, we want to use. There are multiple ways to set the kernel scales. One option is to
treat them as hyperparameters of the model and to set one or multiple scales per kernel before training the
neural network. This enables the use of non-differentiable kernels since the gradient is only calculated
with respect to the weights. In our experiments, we find it preferable to instead treat the kernel scales
as trainable parameters that are learned independently of the neural network weights. The estimated
conditional density calculates as

hω(xxx) = θ =
K⋃

k=1

{λk} p̂(xxx|hω(xxx)) =
M

∑
m=1

K

∑
k=1

λm,kN (y|µk,σ
2
mI) (3.38)

with the trainable variances
{

σ2
m|m ∈M

}
and fixed means {µk|k ∈ K}. As with the MDN, the weights

λk have to resemble a categorical distribution and are transformed with a softmax activation function
before assignment. Given the same number of kernels, the non-trainable mean vectors make the KMN
less flexible than a MDN, but also reduce the danger of overfitting.
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4. Regularization for Conditional Density
Estimation

The conditional density estimators introduced in the previous chapter use flexible distributional fami-
lies, capable of modelling complex conditional densities. Combined with the expressivity of the neural
network, this can lead to severe overfitting when the parameters are trained using the Maximum Like-
lihood approach. Adequate regularization is necessary. Regularization techniques work by introducing
inductive biases (i.e. assumptions about the function other than consistency with the data) in return for
lowering the variance of the trained estimator. The popular weight decay method (Hanson and Pratt
(1989), Krogh and Hertz (1992)), for example, introduces a bias against weights taking on high values
even though this might impede reaching a lower training loss. Regularization techniques for neural net-
works have been thoroughly investigated (Kukačka et al., 2017) and have been shown to work well in
regression and classification settings. For CDE, their effects are more difficult to analyze. This is due to
the NN only having an indirect influence on the output of the model as it merely specifies the parameters
θ of the output distribution instead of the output itself. For this reason, we develop a noise regularization
technique that functions in the data-space. It is therefore independent of the parameters or the specific
model being used. Through adding random noise to the data, we lower the variance of the estimator in
an easy-to-implement way. We show how this method introduces favourable biases when used in the
context of CDE. In this section, we review the most common methods as well as a Bayesian approach to
regularization in order to later conduct a benchmark evaluation of our noise regularization technique.

4.1. Common Methods

We start with looking at some of the most common techniques of regularization for neural networks. All
mentioned methods will subsequently be evaluated in the experiments section to see how well they apply
to CDE. Both weight decay and L1 / L2 regularization are typically applied to the weights, but not the
biases of a neural network. The biases often have less variance and regularizing them quickly leads to
underfitting (Goodfellow et al., 2016). Hence, for this section, the parameter vector ω refers only to the
weights of the neural network.

4.1.1. Weight decay

Weight decay as introduced by Hanson and Pratt (1989) refers to scaling down the weight vector at every
gradient update step:

ωi+1 =−λ∇Ei +(1−α)ωi (4.1)

where α specifies the amount of weight decay, λ refers to the learning rate and ∇Ei is the gradient of
the loss function at time step i w.r.t. the parameters. It has been shown to improve generalization and
to favour local minima of the loss function with smaller weight vectors (Krogh and Hertz, 1992). For
standard stochastic gradient descent (SGD, Robbins and Monro (1951)), this is equivalent to adding an
L2 regularization term to the loss function.

Ereg(ωi) = E(ωi)+
α ′

2
‖ωi‖2

2 (4.2)

where α ′ = α

λ
. This simplifies the implementation of weight decay as the learning algorithm does not need

to be modified. For adaptive gradient methods like Adam (Kingma and Ba, 2014), this equivalence does

Conditional Density Estimation with Normalizing Flows



Page 24 Chapter 4. Regularization for Conditional Density Estimation

not hold, as shown by Loshchilov and Hutter (2017). To properly implement this regularization technique
for Adam, the weight decay needs to be decoupled from the gradient update step. When implemented
properly, weight decay has been shown to lead to improved generalisation even for adaptive gradient
methods. In our experiments we use Adam with decoupled weight decay, also referred to as AdamW.

4.1.2. L1 / L2 Regularization

L1 and L2 regularization are two closely related methods. They both add an extra term to the loss function
that depends solely on the weights ω of the neural network resulting in a regularized loss term:

Ereg(wi) = E(wi)+Ω(ωi) (4.3)

For L1 regularization we have:
Ω(ωi) = ‖ω‖1 (4.4)

This is also referred to as LASSO-regularization when used with linear regression models (Tibshirani,
1996). It favours sparse weight vectors that have few non-zero entries (Goodfellow et al., 2016). It has
been used as a feature selecting algorithm in linear regression, discarding features whose variables take
on a value of zero.

For L2 the regularization term is:
Ω(ωi) = ‖ω‖2 (4.5)

It is also known as ridge regression or Tikonov regularization. As with L1 regularization, it introduces a
biases towards small entries of the weight vector.

4.1.3. Dropout

Dropout (Srivastava et al., 2014) is another frequently used regularization technique. It is only tangen-
tially related to weight decay and L1 / L2 regularization and can easily be combined with the previously
mentioned methods. Dropout can be interpreted as a computationally inexpensive way of implement-
ing more complex ensemble methods. It works by randomly dropping nodes from the network during
training. For every minibatch of the stochastic gradient descent algorithm, a binary mask is sampled that
determines which of the input units and hidden units will be kept. This binary random variable is sam-
pled independently for every node. Switching off a node can be implemented as multiplying its output by
zero. The distribution of the random variable is set as a hyperparameter of the regularization technique
in advance and usually does not change during the training process. p(1) = p(0) = 0.5 is a common
choice. The forward pass, backward pass, and gradient update are then run as usual.

4.2. Bayesian Neural Networks

Next we will look at using Bayesian inference instead of maximum likelihood estimation (MLE) as a
means of regularizing our estimation problems. In particular we will replace the neural network with
a Bayesian neural network (Neal, 2012), turning the NFN into a probabilistic model. This works by
interpreting the weights and biases ω as random variables. This regularization approach works through
setting the prior distributions over these random variables in a way that encodes inductive biases e.g.
incentivizes smaller weights.

4.2.1. Bayesian Inference

Take a probabilistic model with parameters ω (also called latent variables) and a dataset D (also called
visible variables) (Goodfellow et al., 2016). In a probabilistic model, uncertainties about values and
parameters are expressed as probability distributions. Such a model is fully specified by the joint dis-
tribution p(ω,D) (Deisenroth et al., 2020). Given the joint distribution, Bayesian inference amounts to
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computing the posterior probability p(ω|D):

p(ω|D) =
p(D|ω)p(ω)

p(D)
(4.6)

where

• p(ω) is referred to as the prior distribution. It describes the probability of the parameters before
any data is observed. The prior can be used to encode previous assumptions about the parameters.

• p(D|ω) is the likelihood. It is the probability that the observed data was generated by the model
given the parameters ω .

• p(D) is the marginal likelihood or evidence. It is computed by marginalizing over the parameters:
p(D) =

∫
p(D|ω)p(ω)dω . It serves as normalization for the posterior.

Here, the result of our inference procedure is a probability distribution over weights p(ω|D). Both MLE
and Maximum a posteriori inference (MAP) can be interpreted as special cases of Bayesian inference.
MLE corresponds to Bayesian inference with a uniform prior where the result is a mode of the posterior
distribution ω∗. As the evidence p(D) is not dependent on ω and therefore does not change the position
of the mode, we can forgo its calculation in MLE.

In MAP the result is also just the mode of the posterior. Yet contrary to MLE an informative, non-
uniform prior is used. The previously mentioned L1 and L2 regularization techniques can be interpreted as
MAP inference with Laplace and Gaussian priors respectively (Figueiredo, 2003). The BNN is visualized
as a graphical model with its latent and observed variables in figure 4.1.

4.2.2. Variational Inference

The problem with inference in deep, expressive probabilistic models is that the posterior becomes diffi-
cult to compute. Marginalizing over the parameter space to compute the evidence

∫
p(D|ω)p(ω)dω is

unfeasible for deep neural networks with thousands of parameters. Variational inference (VI, Jordan et al.
(1999), Blei et al. (2017)) is one solution to this problem. It describes a way of approximating difficult-
to-compute probability densities through casting it as an optimization problem. In contrast to the popular
alternative method Markov Chain Monte Carlo (MCMC), VI scales better with the dimensionality of the
parameter space Ω and size of the training data set.

Let Q be a family of densities, where a member q(ω) ∈ Q is specified using a parameter vector
θ ∈Θ. The goal of VI is to pick the one member q∗

θ
(ω) ∈Q that is closest to the true posterior p(ω|D),

according to some distance measure. Often the KL divergence is used, an asymmetric, non-negative
measure of proximity. This leads us to Kullback Leibler variational inference, which reads as follows:

q∗θ (ω) = arg min
qθ (ω)∈Q

DKL(qθ (ω)‖p(ω|D)) (4.7)

The family Q should be expressive enough to enable one to find a close approximation of the true
posterior. It should also be efficiently computable to enable fast optimization. Picking the approximate
posterior from a parametric family can be considered one of the drawbacks of VI. If the actual posterior
is not a member of the parametric family, the algorithm will never converge to the true solution even
given infinite datapoints.

By using VI, we have replaced the integration problem present in equation 4.6 with an optimization
problem that is more easily tractable.
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4.2.3. The Evidence Lower Bound

To solve (4.7), we attempt to find the minimum of the following functional with regard to qθ (ω):

DKL(qθ (ω)‖p(ω|D)) = Eqθ (ω) [logqθ (ω)]−Eqθ (ω) [log p(ω|D)] (4.8)

= Eqθ (ω) [logqθ (ω)]−Eqθ (ω) [log p(ω,D)]+ log p(D) (4.9)

This still requires calculating the log evidence p(D) and therefore cannot be optimized directly. Instead
we resort to optimizing a different objective, the evidence lower bound (ELBO):

ELBO(q(ω)) =−Eqθ (ω) [logqθ (ω)]+Eqθ (ω) [log p(ω,D)] (4.10)

=−Eqθ (ω) [logqθ (ω)]+Eqθ (ω) [log p(ω|D)]+ log p(D) (4.11)

=−DKL(qθ (ω)‖p(ω|D))+ log p(D) (4.12)

The ELBO is similar to the negative KL divergence plus the log evidence. Since the evidence p(D) does
not depend on q(ω), maximizing the ELBO yields the same approximate posterior as minimizing the KL
divergence. The ELBO gets its name from the inequality

ELBO(q(ω))≤ log p(D) (4.13)

Which follows from (4.12) and DKL(·) ≥ 0. The ELBO therefore lower-bounds the log evidence. It is
sometimes referred to as the negative free energy F . To get some insights into the ELBO objective, we
rewrite equation 4.10 as

ELBO(qθ (ω)) = Eqθ (ω) [log p(D|ω)]+Eqθ (ω) [log p(ω)]−Eqθ (ω) [logqθ (ω)] (4.14)

= Eqθ (ω) [log p(D|ω)]−DKL(qθ (ω)‖p(ω)) (4.15)

Therefore, in maximizing the ELBO we try to find an approximate posterior that results in a high expected
likelihood while being close to the prior (Blei et al., 2017).

4.2.4. Gradient Estimators for the ELBO

Next, we look at the two terms of (4.15). When using suitable distributions for the priors, as well as
for the approximate posterior, the KL-divergence in this term is analytically tractable. This is true, for
example, for conjugate distributions like a Gaussian prior and a Mean-field posterior, introduced in the
next section.

Calculating the expected likelihood, i.e. the first term in (4.15), is not as simple. It can only be
approximated using Monte Carlo methods. To optimize the ELBO we need to calculate the gradient of
this expected likelihood w.r.t. θ . One approach is a score function gradient estimator:

∇θEqθ (ω) [log p(D|ω)] = Eqθ (ω) [log p(D|ω)∇θ logqθ (ω)] (4.16)

=
1
M

M

∑
i=0

log p(D|ωi)∇θ logqθ (ωi) (4.17)

where ωi ∼ qθ (ω). Equation 4.16 can be obtained using the log derivative trick. For further information
on this derivation we refer to Mohamed et al. (2019), section 4.2. In practice this gradient estimation has
a high variance, which makes it difficult to use. One solution is to utilize a pathwise gradient estimator
by employing the reparametrization trick (Kingma and Welling, 2013). It works by replacing the random
variable ω with a deterministic function g(ε,θ) and an auxiliary random variable ε that has a simpler,
non-parametric distribution p(ε). It needs to hold that:

ω ∼ qθ (ω) ≡ ω = g(ε,θ),ε ∼ p(ε) (4.18)
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As an example, consider an arbitrary Gaussian:

ω ∼N (µ,σ2) ≡ ωi ∼ g(ε,µ,σ) = σ · ε +µ, ε ∼N (0,1) (4.19)

Another examples would be using an affine flow to parametrize log-scale distributions as explained in
section 3.1.1. The reparametrization trick allows us to formulate the gradient of the expectation of the
likelihood as:

∇θEpθ (ω)[log p(D|ω)] = ∇θEp(ε)[log p(D|g(ε,θ))] = Ep(ε)[∇θ log p(D|g(ε,θ))] (4.20)

=
1
M

M

∑
i=0

∇θ log p(D|g(εi,θ)) (4.21)

where εi ∼ p(ε). This usually results in estimates of much lower variance (Kingma and Welling, 2013).
Instead of calculating the gradient ∇θ log p(D|g(εi,θ)) over the whole dataset D, we use minibatches.

Minimizing the negative ELBO using SGD with minibatches has been named stochastic variational in-
ference (Hoffman et al., 2012). Adding to this the stochasticity of approximating the gradient using
MC is called doubly stochastic variational inference (Titsias and Lázaro-Gredilla, 2014). It allows us to
perform variational inference on complex models and large datasets.

xi

yi

ω

θprior

N

Figure 4.1.: A Bayesian neural network represented as a graphical model. xxxi and yyyi are the observed
variables. In using a BNN we assume that the conditional random variable yyyi is dependent
only on the input variable xxxi and on the weights and biases ω of our neural network. The
parameter θprior governing our prior pθprior(ω) is another latent variable. As can be seen, we
have no per-datapoint latent variables, therefore our posterior distribution will be fixed and
independent of the input.

4.2.5. The Mean-field Distributional Family

To finalize the VI procedure, we are now left with picking a parametric distribution for the approximate
posterior distribution. One of the simplest options is the mean-field distribution family, leading to mean-
field variational inference.

q(ωωω|θ) =
N

∏
i=0

qθi(ωi) (4.22)

This makes the rather bold assumption that the posterior can be fully factorized into independent distribu-
tions over each dimension. This assumption makes the posterior efficient to optimize. Often a univariate
Gaussian is picked as the factorized distribution, leading to the following parametric posterior:

θ =
{
(µi,δ

2
i ), . . . ,(µN ,δ

2
N)
}
, µi ∈ R,δ 2

i ∈ R+, qθ (ωωω) =
N

∏
i=0

N (ωi|µi,δ
2
i ) (4.23)
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A mean field posterior is just one of the options. In recent years, many alternatives have been proposed,
like inverse autoregressive flows that have yielded performance gains (Kingma et al., 2016). However,
for some of those posterior distributions, calculating the KL divergence between posterior and prior is
not possible analytically. It has to be estimated using Monte-Carlo methods, resulting in another source
of stochasticity. A more expressive posterior family would allow the convergence to approximations
that are closer to the true posterior. A trade-off has to be made between expressiveness and speed of
computation.

4.2.6. Bayesian Inference as Regularization

BNNs can be used as a regularization technique by setting appropriate priors over the weights and bi-
ases. As can be seen in equation 4.15, maximizing the ELBO is a trading-off between maximizing the
likelihood while keeping the approximate posterior close to the prior. In our experiments, we set the
prior distribution to be a standard Gaussian, thereby biasing the parameters of the NN to be close to zero.
More advanced ways of setting the prior (e.g. setting a less informative prior for the biases of the NN
since they tend to overfit less (Goodfellow et al., 2016)) could be explored. Hyperparameter-tuning the
priors is also be possible. In total, BNNs and VI are complex to implement compared to the previously
introduced regularization approaches.

4.3. Noise regularization

All previously introduced regularization methods work in a parameter focused way, either having a direct
effect on how the parameters are updated (Dropout, weight decay, BNN) or adding a parameter dependent
loss (L1/L2). The biases introduced by those methods are harder to analyze in the context of CDE
compared to standard regression. This is due to the neural network merely having an indirect effect on
the output of the model, as it specifies just the parameters of the output distribution and not the output
itself. Furthermore, all four previously introduced methods require separate implementations for each
CDE model.

In this section we introduce a novel approach, noise regularization for CDE. Noise regularization
refers to adding random noise the data during each minibatch. We show how this methods introduces
favourable biases and leads to a smoothing of conditional distribution while being easy to implement and
model agnostic. For a more in-depth analysis and consistency results, we refer to the associated paper
Rothfuss et al. (2019).

Adding noise to the datapoints during training has been a commonly used regularization technique for
regression and classification (Holmstrom and Koistinen (1992), Bishop (1995)). In contrast, we analyze
such noise regularization in the more general case of conditional density estimation. Adding noise can
be understood as a form of dataset augmentation. The original data points (xxxi,yyyi) are replaced by random
variables (xxxi +ξξξ x,yyyi +ξξξ y), where the noise is sampled from the distributions Kx(ξξξ x) and Ky(ξξξ y). Since
we can sample infinitely many noise vectors, we can increase the size of the dataset arbitrarily. We
require the noise distribution to be zero-centered and independently as well as identically distributed in
each dimension with a standard deviation of h, that is,

Eξξξ∼K(ξξξ ) [ξξξ ] = 0, Eξξξ∼K(ξξξ )

[
ξξξ ξξξ
>
]
= h2I (4.24)

The strength of the regularization can be controlled through the variances h2
x ,h

2
y , with a higher variance

leading to more smoothing. When using stochastic gradient descent with mini-batches, we apply this
augmentation to every mini-batch of datapoints, as outlined in algorithm 1.
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Algorithm 1 Conditional MLE with Noise Regularization using Mini-Batch Gradient Descent
Require: D = {(xxxi,yyyi), . . . ,(xxxN ,yyyN)}, standard deviation of the noise h
Require: learning rate α , mini-batch size m

Initialize θ

while θ not converged do
Sample minibatch {(xxxi,yyyi), . . . ,(xxxm,yyym)} ⊂D
for j = 1 to m do

Draw perturbation ξξξ ∼ K
Set x̃xx j = xxx j +hξξξ

Set ỹyy j = yyy j +hξξξ

end for
θ ← θ +α∇θ ∑

m
j=1 log p̂(ŷyy j|hω(x̂xx j)

end while
return optimized parameter θ

By adding these small random perturbations, the data points are smeared out, making it harder for the
model to overfit to individual data points. Intuitively, this leads to a conditional density estimate that is
smoother w.r.t. xxx as well as yyy.

This intuition can be supported mathematically. We employ a second order Taylor expansion of the
negative log likelihood loss l(zzzi +ξξξ ) around each datapoint zzzi ∈ D:

l(zzzi +ξξξ )≈ l(zzzi)+ξξξ
>

∇zzzl(zzz)
∣∣
zzzi
+

1
2

ξξξ
>

∇
2
zzz l(zzz)

∣∣
zzzi

ξξξ +O(ξξξ
3
) (4.25)

Assuming that the noise ξξξ is small, we can neglect O(ξξξ
3
). Now we take the expectation of this loss and

use the constraints for ξξξ defined in (4.24) to simplify:

Eξξξ∼K(ξξξ ) [l(zzzi +ξξξ )]≈ Eξξξ∼K(ξξξ )l(zzzi)+Eξξξ∼K(ξξξ )

[
ξξξ
>

∇xl(zzz)
∣∣
zzzi

]
+

1
2
Eξξξ∼K(ξξξ )

[
ξξξ
>

∇
2
x l(zzz)

∣∣
zzzi

ξξξ

]
(4.26)

= l(zzzi)+Eξξξ∼K(ξξξ ) [ξξξ ]
>

∇zzzl(zzz)
∣∣
zzzi
+

1
2
Eξξξ∼K(ξξξ )

[
ξξξ
>

∇
2
zzz l(zzz)

∣∣
zzzi

ξξξ

]
(4.27)

= l(zzzi)+
1
2
Eξξξ∼K(ξξξ )

[
∑

j
∑
k

ξξξ jξξξ k
∂ 2l(zzz)

∂ z( j)∂ z(k)

∣∣∣∣
zzzi

]
(4.28)

= l(zzzi)+
1
2 ∑

j
Eξξξ

[
ξξξ

2
j

]
∂ 2l(zzz)

∂ z( j)∂ z( j)

∣∣∣∣
zzzi

+
1
2 ∑

j
∑
k 6= j

Eξξξ

[
ξξξ jξξξ k

]
∂ 2l(zzz)

∂ z( j)∂ z(k)

∣∣∣∣
zzzi

(4.29)

= l(zzzi)+
η2

2 ∑
j

∂ 2l(zzz)
∂ z( j)∂ z( j)

∣∣∣∣
zzzi

(4.30)

Where z( j) denotes the elements of the column vector zzz. The negative log likelihood loss on a dataset is
the sum over the losses for each datapoint zzzi ∈ D. We transform (4.30) by moving to the negative log
likelihood loss over the dataset and expanding zzzi = (xxxi,yyyi):

Eω(D)≈−
n

∑
i=1

log p̂(yyyi|hω(xxxi))−
h2

y

2

n

∑
i=1

dy

∑
j=1

∂ 2 log p̂(yyyi|hω(xxxi))

∂y( j)∂y( j)

∣∣∣∣x=xi
y=yi

− h2
x

2

n

∑
i=1

dx

∑
j=1

∂ 2 log p̂(yyyi|hω(xxxi))

∂x( j)∂x( j)

∣∣∣∣x=xi
y=yi

(4.31)
The first term of this equation is the regular negative log likelihood without any regularization. The
second and third term are a regularization penalty on the second derivative of the loss function with
regards to xxx and yyy, proportional to the respective noise variances. The first term pushes the parameters
towards high likelihood of the data, while the other terms incentivize smoothness of the density estimate
w.r.t. xxx and yyy.
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Figure 4.2.: A conditional MDN density estimate (red) and the true conditional density (green) for dif-
ferent intensities of noise regularisation h. We fit the MDN using 3000 samples drawn from
a conditional Gaussian. No noise regularization results in the model overfitting to individ-
ual samples. By increasing the noise intensity, the model captures the underlying patterns,
allowing it to generalize better.

The effects of this can be observed in figure 4.3, where we fit a MDN to 3000 datapoints. Without noise
regularization, the conditional is jagged and poorly captures the underlying patterns in the data. Increas-
ing the amount of noise regularization through raising the standard deviation h results in a smoothing of
the conditional, leading to visibly better generalization beyond the training data.

To summarize, in this section we introduced noise regularization and mathematically showed how it
adds a favourable smoothness bias when used in CDE. Compared to the previously introduced regular-
ization techniques that work in the parameter space, noise regularization makes no further assumptions
about the CDE model being used. It only requires manipulating the data in each minibatch through
adding random noise. Noise regularization is therefore among the easiest regularization techniques to
implement, especially compared to complex methods like weight decay and BNNs. In the next section
we show how this methods is effective across models and datasets, making it the preferable approach for
regularizing high-capacity CDE models when data is scarce.
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5. Experiments and Comparisons

In this chapter we evaluate our CDE models as well as the presented regularization techniques across 3
simulated densities and 5 real-world datasets. We compare the NFN’s performance against that of the
MDN and KMN. We compare the effectiveness of noise regularization against L1 & L2 regularization,
weight decay and the BNN. For both the simulated densities and the real world datasets, this chapter first
introduces the data before then presenting and discussing the results.

5.1. Evaluation on Simulated Densities

5.1.1. Gaussian Mixture Model

We use the GMM to test how well each model can fit a multimodal conditional. In this simulated density,
the joint distribution p(xxx,yyy) is given by a mixture of K Gaussians where xxx ∈ Rm and yyy ∈ Rl can be
factorized. The conditional distribution can be expressed as:

p(yyy|xxx) =
K

∑
i=1

Wk(x)N (yyy|µy,k,Σy,k) (5.1)

The mixture weights are a categorical distribution that is a function of xxx:

Wk(xxx) =
wk N (xxx|µx,k,Σx,k)

∑
K
j=1 wk N (xxx|µx, j,Σx, j)

(5.2)

The number of kernels and the dimensionality of xxx,yyy are hyperparameters of this simulation that can be
set in advance. A plot of three conditionals of a GMM consisting of 5 kernels can be seen in figure 5.1.1.

The mixture weights, kernel means, and kernel convariance matrices are all sampled at random, al-
lowing us to do cross-validation by using different instances of the same simulation density.
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Figure 5.1.: Gaussian mixture with 5 components. xxx,yyy are both one-dimensional.
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5.1.2. Skew-normal

For the Skew-normal simulated density, the data is sampled from a joint distribution p(x,y) in two dimen-
sions. x ∈R is normally distributed and y ∈R follows a conditional univariate Skew-normal distribution
(Azzalini, 2005) whose parameters (ξ ,ω,α) are dependent on x in the following way:

x∼N

(
x
∣∣∣∣0, 1

2

)
(5.3)

ξ (x) = ax+b a,b ∈ R (5.4)

ω(x) = cx2 +d c,d ∈ R (5.5)

α(x) = αlow +
1

1+ e−x (αhigh−αlow) (5.6)

y∼ p(y|x) = 2
ω(x)

N

(
y−ξ (x)

ω(x)

)
Φ

(
α(x)

y−ξ (x)
ω(x)

)
(5.7)

Here, Φ(x) refers the the cumulative distribution function of a normal distribution. y follows a distribution
whose skewness changes over x. It allows us to gauge the performance of the three estimators on skewed
distributions, which are often observed in financial markets. A plot of three conditionals of a Skew
Normal density can be observed in figure 5.1.2.
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Figure 5.2.: Conditional probability density of the Skew Normal simulated density evaluated a different
values of xxx. Both xxx and yyy are one-dimensional.

5.1.3. Econ density

Data from this density is sampled as follows:

x = |εx| , εx ∼N (εx|0,1) (5.8)

y∼N (y|µ = x2,σ = 1+ x) (5.9)

The idea behind this density was for x to represent market volatility and for y to be a financial measure
that is explained by volatility. For higher market volatility, the noise in the financial measure y increases.
Furthermore, the relationship between the two variables is non-linear. This is a fairly simple simulated
density with the conditional distribution being Gaussian. Therefore, we can expect our models with
Gaussian output distributions (the MDN and KMN) to perform well. A plot of three conditionals of the
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Econ density can be observed in figure 5.1.3.
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Figure 5.3.: Conditional probability density of the Econ density evaluated a different values of x.

5.1.4. Results

Figure 5.4.: Results of running the Normalizing Flow Network, the Mixture Density Network and the
Kernel Mixture Network on the three simulated datasets. All models have noise regulariza-
tion applied according to the rule-of-thumb noise schedule with an initial bandwidth of 0.5
(Rothfuss et al., 2019).

First we analyze how well the NFN performs compared to the MDN and KMN on the three simulated
datasets, as seen in figure 5.4. Noise regularization was used. The variance of the added noise was set to
temper off with increasing number of datapoints, according to the rule-of-thumb noise schedule, with an
inital noise bandwidth of 0.5. More information on noise schedules can be found in the associated paper
Rothfuss et al. (2019). Before computing the results on any of the datasets, we perform hyperparameter
tuning on the three simulated densities. The resulting configuration for every estimator can be found in
the appendix A.1.

The KMN, with its Gaussian Mixture conditional, where the means are sampled from the data, is
ideally suited for the GMM dataset and can be seen outperforming the NFN and MDN. For the two other
simulated datasets, the NFN performs best. As observed in the results for the Econ density, the NFN
is perfectly capable of modelling variants of the Gaussian distribution through transformations using
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Figure 5.5.: Results of running our three parametric conditional density estimators on the Gaussian Mix-
ture and Skew-normal simulated densities with different regularization techniques applied.

an affine flow. As suspected, the normalizing flows are better at modelling skewed distribution than a
mixture of Gaussians, which can be observed in the final plot of figure 5.4.

Next we look at comparing the different regularization techniques for conditional density estimators
introduced in section 4. The results are visualized in figure 5.5. The presented noise regularization
technique can be seen outperforming all other methods across models and datasets. The other methods’
performance is significantly dependent on the specific model being used. For example, we can see the
BNN performing somewhat well at regularizing the NFN, while showing poor performance when used
with a KMN. As the noise regularization is works in the data-space, irrespective of the parameters,
this invariance to the specific model was expected. The Bayesian neural networks has difficulties of
converging to an optimal parameter setting, even given large datasets. We suspect this is due to the
inherent noise in the gradient estimates.

To summarize the evaluation results on the simulated densities, we can state that the NFN performs
slightly better than a MDN while both outperforming the KMN, except for very tailored datasets. The
presented noise regularization scheme works well across models and datasets. The other approaches to
regularization require significant model- and dataset-specific tuning to reach comparable performances.

5.2. Evaluation on Real-world datasets

We use three common regression benchmark, one location prediction dataset and one financial dataset to
evaluate the real-world performance of the NFN and our other CDE models.

5.2.1. UCI benchmarks

The regression datasets from the UCI repositories (Dua and Graff, 2017) are used as common benchmarks
for regression models. We test our estimators on three of them:

• Boston housing dataset: This small dataset with only 506 datapoints contains information col-
lected by the U.S. Census service concerning the price of housing in the area around Boston. The
prediction target is the value of the house in question.

URL: https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

• Concrete compressive strength datset (Yeh, 1998): This dataset contains eight explanatory vari-
ables describing the composition and attributes of a piece of concrete. The prediction target is the

Conditional Density Estimation with Normalizing Flows



Section 5.2: Evaluation on Real-world datasets Page 35

Euro Stoxx NYC Taxi Boston Concrete Energy

M
D

N

noise (ours) 3.94±0.03 5.25±0.04 -2.49±0.11 -2.92±0.08 -1.04±0.09
weight decay 3.78±0.06 5.07±0.04 -3.29±0.32 -3.33±0.14 -1.21±0.10

l1 reg. 3.19±0.19 5.00±0.05 -4.01±0.36 -3.87±0.29 -1.44±0.22
l2 reg. 3.16±0.21 4.99±0.04 -4.64±0.52 -3.84±0.26 -1.55±0.26
Bayes 3.26±0.43 5.08±0.03 -3.46±0.47 -3.19±0.21 -1.25±0.23

K
M

N

noise (ours) 3.92±0.01 5.39±0.02 -2.52±0.08 -3.09±0.06 -1.62±0.06
weight decay 3.85±0.03 5.31±0.02 -2.69±0.15 -3.15±0.06 -1.79±0.12

l1 reg. 3.76±0.04 5.39±0.02 -2.75±0.13 -3.25±0.07 -1.82±0.10
l2 reg. 3.71±0.05 5.37±0.02 -2.66±0.13 -3.18±0.07 -1.79±0.13
Bayes 3.33±0.02 4.47±0.02 -3.40±0.11 -4.08±0.05 -3.65±0.07

N
FN

noise (ours) 3.90±0.01 5.20±0.03 -2.48±0.11 -3.03±0.13 -1.21±0.08
weight decay 3.82±0.06 5.19±0.03 -3.12±0.39 -3.12±0.14 -1.22±0.16

l1 reg. 3.50±0.10 5.12±0.05 -12.58±12.76 -3.91±0.52 -1.29±0.16
l2 reg. 3.50±0.09 5.13±0.05 -14.22±9.60 -3.99±0.66 -1.34±0.19
Bayes 3.34±0.33 5.10±0.03 -5.99±2.45 -3.55±0.46 -1.11±0.22

Table 5.1.: Comparison of various regularization methods for three neural network based CDE models
across 5 data sets. We report the test log-likelihood and its respective standard deviation
(higher log-likelihood values are better).

compressive strength.

URL: https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

• Energy efficiency dataset (Tsanas and Xifara, 2012): The dataset comes from performing energy
analysis of different building shapes using a simulation. The predicted density is two-dimensional
between the heating and cooling load.

URL: https://archive.ics.uci.edu/ml/datasets/energy+efficiency

5.2.2. EuroStoxx 50

This is a proprietary dataset from the Computational Risk and Asset Management Research Group (C-
RAM) at KIT. It contains data from 3169 trading days between January 2003 until June 2015. We use 14
different explanatory variables to predict the conditional probability density of 1-day log returns. This
dataset gives us a way to apply our estimator to real-world financial data, where uncertainty quantification
is important and densities are often severely non-Gaussian.

5.2.3. NYC Yellow Taxi

This dataset contains information on trips of NYC taxis in the Manhattan area recorded during January
2016. We predict the spacial drop-off location for each trip conditioned on the pickup location, the day of
the week and the time of day. We follow the setup in Dutordoir et al. (2018). The weekday and time are
represented as sine and cosine with natural periods, resulting in 6 explanatory variables when combined
with the 2D pickup location From the ca. 1 million trips we sample 10.000 trips to train on.

The full dataset is available at: http://www.andresmh.com/nyctaxitrips/

5.2.4. Results

When looking at the evaluation of the regularization techniques on the various real-world datasets in
table 5.1, we can draw similar conclusions as for the simulated densities. The NFN’s performance is
comparable with a MDN, with the MDN having a slight advantage on some datasets. When looking
at the effectiveness of noise regularization, it performs better than all other regularization approaches
across datasets and models. Among the other, worse-performing approaches, weight decay shows the
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most consistent performance across datasets. L1/L2 regularization and the Bayesian neural network
exhibit very variable results. The BNN for example is the preferable choice for the NFN on Energy, but
a poor choice on Boston, where it exhibits very high variance.
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6. Outlook and further work

Compared to previous high-capacity models in CDE, such as the MDN and KMN, that rely on mixture
densities, the NFN uses a novel and fundamentally different approach of representing the conditional
density. The planar and radial flows used in this work were originally designed to model much higher-
dimensional densities than what we used them on in this thesis. Our simulated as well as real-world
datasets never exceeded 2 dimensions in the target variable yyy, whereas the original paper used planar and
radial flows to model posteriors in VI that are of much higher dimension (Rezende and Mohamed, 2015).
Future work could investigate more expressive flows such as Deep Dense Sigmoidal Flows (Huang et al.,
2018) that implement an invertible neural network. They are computationally more complex than planar
or radial flows with their determinant calculation lying in O(d3), where d is the dimension of the distri-
bution being modeled. Yet the are significantly more expressive and might therefore be effective in low
dimensional problems. The Sylvester Normalizing Flows (van den Berg et al., 2018) are another option.
They are a generalization of the planar flows used in this work. Whereas planar flows can be interpreted
as a single-layer, single-unit MLP with a skip connection, Sylvester NFs remove this bottleneck by al-
lowing one to add more units. Their determinant lies in O(M), where M is a hyperparameter that tunes
the expressiveness.

Further improvements should be possible by advancing the implementation of the Bayesian neural net-
work given in section 4.2. Previous work has seen improved convergence using annealing (Rezende
and Mohamed, 2015). This describes the technique of slowly ramping up the contribution of the KL
divergence to the ELBO loss, reducing the likelihood of getting stuck in local minima. For the approxi-
mate posterior family used in the Bayesian neural network, two approaches can be pursued. One option
is to implement a more expressive posterior distribution like the IAF, allowing for a closer approxima-
tion of the true posterior. This has yielded improved results for many other Bayesian models (Kingma
et al., 2016). Another option is given in Trippe (2017). They compare more constrained mean-field ap-
proximations with fixed variances against more expressive mean-field approximations and generally find
improved performance with the less expressive posterior families.

Another interesting direction for future work is a different Bayesian treatment of NFNs w.r.t. regu-
larization. In section 4.2, we regularize the parameters of the neural network through a Bayesian prior.
Instead, one could directly treat the parameters of the flow as random variables, allowing us to set prior
distributions for them. In particular, posterior inference on latent variables can be performed using amor-
tized variational inference (Zhang et al., 2018), similar to Rezende et al. (2014), where a neural network
is used to predict the local variational parameters. This would yield a model similar in structure to the
NFN, yet with priors over the flow instead of over the NN, providing a more direct and interpretable
means of regularizing the conditional distribution.
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7. Conclusion

In this thesis we present the Normalizing Flow Network, a novel conditional density model designed
to accurately estimate low-dimensional, non-Gaussian densities. We compare this model against the
Mixture Density Network and Kernel Mixture Network across 8 datasets. We find the NFN to perform
favourably on non-Gaussian densities, while delivering performance comparable to a Mixture Density
Network on other densities. We highlight the expandability and configureability of normalizing flows,
the density model used by the NFN, showing how they provide a novel way of efficiently parametrizing
a wide variety of distributions.

As a second contribution, we review common neural network regularization approaches and test their
effectiveness when used in the context of CDE. We show how Variational Inference and Bayesian Neu-
ral Networks can be used for regularization. Most regularization methods work in the parameter space,
making the biases they introduce more difficult to analyze in the context of CDE. In this light, we pro-
pose a novel regularization approach, noise regularization for CDE, that works in the data space and does
not have these shortcomings. We show mathematically how noise regularization introduces favourable
biases by incentivizing smooth distribution estimates. Empirically, we demonstrate that noise regulariza-
tion outperforms other regularization techniques across models and datasets. Its effectiveness, together
with its ease of implementation, makes it the preferred method for regularizing high-capacity CDE mod-
els like the NFN.
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A. Appendix

A.1. Hyperparameter settings

MDN KMN NFN
hidden layer sizes (32,32) (32,32) (32,32)
hidden non-linearity tanh tanh tanh
training epochs 1000 1000 1000
Adam learning rate 0.001 0.001 0.001
K: number of components 20 50 1 affine + 10 radial flows
data normalization True True True
initialization of scales - [0.7, 0.3] -
trainable scales - True -

Table A.1.: The default configuration of the estimators before any regularisation is applied. This con-
figuration was determined through hyperparameter optimization on the simulated datasets.
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